The Feng-Rao bounds

Olav Geil
Aalborg University
Denmark

KIAS International Conference on Coding Theory and Applications 2012

Linear code $=$ a subspace.

Operations are:

- Vector addition.
- Scalar multiplication.
[$n, k, d]$ the usual parameters.

To deal with d (and k and even n) the compontwise product is useful:

Linear code $=$ a subspace.
Operations are:

- Vector addition.
- Scalar multiplication.
[$n, k, d]$ the usual parameters.
To deal with d (and k and even n) the compontwise product is useful:
$-\left(c_{1}, \ldots, c_{n}\right) *\left(d_{1}, \ldots, d_{n}\right)=\left(c_{1} d_{1}, \ldots, c_{n} d_{n}\right)$.

Claim: Code constructions with a supporting algebra:

- algebraic geometric codes,
- Reed-Muller codes and relatives,
- affine variety codes, are about getting information on the componentwise product.

Claim: Code constructions with a supporting algebra:

- algebraic geometric codes,
- Reed-Muller codes and relatives,
- affine variety codes, are about getting information on the componentwise product.

Dual code Parity check matrix

The usual Feng-Rao bound The Andersen-G bound
(Feng-Rao bound for dual codes)

Order bound

Dual code Parity check matrix

The usual Feng-Rao bound
(Feng-Rao bound for dual codes)

Order bound

Primary code Generator matrix

(Feng-Rao bound for primary codes)

Footprint bound

Dual code Parity check matrix

The usual Feng-Rao bound
(Feng-Rao bound for dual codes)

Order bound

Primary code Generator matrix

(Feng-Rao bound for primary codes)

Footprint bound

This talk:

- connection between the levels of description,
- connection between dual and primary

Results:

- Consequences of the above connections.
- Information derived from medium and low level descriptions.

Important results that are not covered:

- Higher level results such as Beelen bound,

Duursma-Kirov-Park bound and list decoding of algebraic geometric codes by Lee-Bras-Amorós-O'Sullivan's method.

This talk:

- connection between the levels of description,
- connection between dual and primary

Results:

- Consequences of the above connections.
- Information derived from medium and low level descriptions.

Important results that are not covered:

- Higher level results such as Beelen bound,

Duursma-Kirov-Park bound and list decoding of algebraic geometric codes by Lee-Bras-Amorós-O'Sullivan's method.

This talk:

- connection between the levels of description,
- connection between dual and primary

Results:

- Consequences of the above connections.
- Information derived from medium and low level descriptions.

Important results that are not covered:

- Higher level results such as Beelen bound,

Duursma-Kirov-Park bound and list decoding of algebraic geometric codes by Lee-Bras-Amorós-O'Sullivan's method.

Ideal $J \subseteq \mathbb{F}[\vec{X}]$

The footprint:
$\Delta_{\prec}(J)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right.$ is not a leading monomial of any polynomial in $\left.J\right\}$

The footprint bound in a special case:

Ideal $J \subseteq \mathbb{F}[\vec{X}]$
The footprint:
$\Delta_{\prec}(J)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right.$ is not a leading monomial of any polynomial in $\left.J\right\}$
$I \subseteq \mathbb{F}_{q}[\vec{X}], I_{q}=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle$.
The footprint bound in a special case:
$\# \mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=\# \Delta_{\prec}\left(I_{q}\right)$.

$$
I_{q}=\left\langle X^{q}-X, Y^{q}-Y\right\rangle
$$

$$
\Delta_{\prec}\left(I_{q}\right)=\left\{X^{i} Y^{j} \mid 0 \leq i, j<q\right\}
$$

$$
\# \mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=q^{2}
$$

Study of norm/trace gives q^{3} zeros.
$I_{q}=\left\langle X^{q}-X, Y^{q}-Y\right\rangle$
$\Delta_{\prec}\left(I_{q}\right)=\left\{X^{i} Y^{j} \mid 0 \leq i, j<q\right\}$
$\# \mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=q^{2}$
$I_{q^{2}}=\left\langle X^{q+1}-Y^{q}-Y, X^{q^{2}}-X, Y^{q^{2}}-Y\right\rangle$.
Choose monomial ordering with $x^{q+1} \prec Y^{q}$,
$\Delta_{\prec}\left(I_{q^{2}}\right) \subseteq\left\{X^{i} Y^{j} \mid 0 \leq i<q^{2}, 0 \leq j<q\right\}$
$\# \mathbb{V}_{\mathbb{F}_{q^{2}}}\left(I_{q^{2}}\right) \leq q \cdot q^{2}=q^{3}$
Study of norm/trace gives q^{3} zeros.

Gröbner basis for J w.r.t. \prec is a basis for J such that $\Delta_{\prec}(J)$ can easily be read off.
$\mathcal{G}=\left\{G_{1}, \ldots, G_{s}\right\} \subseteq J$ is Gröbner basis for J w.r.t. \prec iff any monomial in $\operatorname{Im}(J)$ is divisible by some $\operatorname{Im}\left(G_{i}\right)$.

Gröbner basis for I_{q} gives exact information on $\# \mathbb{V}_{\mathbb{E}_{q}}\left(I_{q}\right)$.

Gröbner basis for J w.r.t. \prec is a basis for J such that $\Delta_{\prec}(J)$ can easily be read off.
$\mathcal{G}=\left\{G_{1}, \ldots, G_{s}\right\} \subseteq J$ is Gröbner basis for J w.r.t. \prec iff any monomial in $\operatorname{Im}(J)$ is divisible by some $\operatorname{Im}\left(G_{i}\right)$.

Gröbner basis for I_{q} gives exact information on $\# \mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)$.
$\mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$.
Codeword $\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$.
$w_{H}(\vec{c})=n-\# \Delta_{\zeta}\left(l_{q}+\langle F\rangle\right)$ (n minus number of commen zeros).
Information on which leading monomials occour in the code construction gives information on minimum distance.

Improved code construction straight forward.
$\mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$.
Codeword $\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$.
$w_{H}(\vec{c})=n-\# \Delta_{\prec}\left(I_{q}+\langle F\rangle\right)$ (n minus number of commen zeros).
Information on which leading monomials occour in the code
construction gives information on minimum distance.

Improved code construction straight forward.
$\mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$.
Codeword $\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$.
$w_{H}(\vec{c})=n-\# \Delta_{\prec}\left(I_{q}+\langle F\rangle\right)$ (n minus number of commen zeros).
Information on which leading monomials occour in the code construction gives information on minimum distance.

Improved code construction straight forward.
$\left\{M+J \mid M \in \Delta_{\prec}(J)\right\}$ is a basis for $\mathbb{F}[\vec{X}] / J$ as a vectorspace over \mathbb{F}.

$\left\{M+J \mid M \in \Delta_{\prec}(J)\right\}$ is a basis for $\mathbb{F}[\vec{X}] / J$ as a vectorspace over \mathbb{F}.
$G=\left[\begin{array}{ccc}M_{1}\left(P_{1}\right) & \cdots & M_{1}\left(P_{n}\right) \\ M_{2}\left(P_{1}\right) & \cdots & M_{2}\left(P_{n}\right) \\ \vdots & \ddots & \vdots \\ M_{k}\left(P_{1}\right) & \cdots & M_{k}\left(P_{n}\right)\end{array}\right], \quad M_{1}, \ldots, M_{k} \in \Delta_{\prec}\left(I_{q}\right), M_{i} \neq M_{j}$
is a code of dimension k

Reed-Muller codes:
Let $I_{5}=\left\langle X^{5}-X, Y^{5}-Y\right\rangle$ and
$\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n=25}\right)\right)$, with $\operatorname{Im}(F)=X^{i} Y^{j}$.
We get $w_{H}(\vec{c})=n-\# \Delta_{\prec}\left(I_{5}+\langle F\rangle\right) \geq(5-i)(5-j)$.

Y^{4}	$X Y^{4}$	$X^{2} Y^{4}$	$X^{3} Y^{4}$	$X^{4} Y^{4}$						
Y^{3}	$X Y^{3}$	$X^{2} Y^{3}$	$X^{3} Y^{3}$	$X^{4} Y^{3}$						
Y^{2}	$X Y^{2}$	$X^{2} Y^{2}$	$X^{3} Y^{2}$	$X^{4} Y^{2}$						
Y	$X Y$	$X^{2} Y$	$X^{3} Y$	$X^{4} Y$						
1	X	X^{2}	X^{3}	X^{4}	$\quad \quad$	5	4	3	2	1
---:	---:	---:	---:	:---:						
10	8	6	4	2						
15	12	9	6	3						
20	16	12	8	4						
25	20	15	10	5						

Reed-Muller codes:

Let $I_{5}=\left\langle X^{5}-X, Y^{5}-Y\right\rangle$ and
$\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n=25}\right)\right)$, with $\operatorname{Im}(F)=X^{i} Y^{j}$.
We get $w_{H}(\vec{c})=n-\# \Delta_{\prec}\left(I_{5}+\langle F\rangle\right) \geq(5-i)(5-j)$.

5	4	3	2	1
10	8	6	4	2
15	12	9	6	3
20	16	12	8	4
25	20	15	10	5

$\mathrm{RM}_{5}(4,2)$ is $[25,15,5]$

Reed-Muller codes:
Let $I_{5}=\left\langle X^{5}-X, Y^{5}-Y\right\rangle$ and
$\vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{n=25}\right)\right)$, with $\operatorname{Im}(F)=X^{i} Y^{j}$.
We get $w_{H}(\vec{c})=n-\# \Delta_{\prec}\left(I_{5}+\langle F\rangle\right) \geq(5-i)(5-j)$.

5	4	3	2	1
10	8	6	4	2
15	12	9	6	3
20	16	12	8	4
25	20	15	10	5

$\mathrm{RM}_{5}(4,2)$ is $[25,15,5]$
Improved code construction gives [25, 17, 5]

Hermitian codes:
$I=\left\langle X^{q+1}-Y^{q}-Y\right\rangle, I_{q^{2}}=I+\left\langle X^{q^{2}}-X, Y q^{2}-Y\right\rangle$.
$w\left(X^{i} Y^{j}\right)=i q+j(q+1)$
$X^{s} Y^{t} \prec_{w} X^{u} Y^{v}$

- if $w\left(X^{s} Y^{t}\right)<w\left(X^{u} Y^{v}\right)$
- or $w\left(X^{s} Y^{t}\right)=w\left(X^{u} Y^{v}\right)$ and $t<v$

Weighted degree lexicographic ordering.

$$
I_{4}=\left\langle X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\rangle
$$

$$
\Delta_{\prec_{w}}\left(I_{4}\right) \quad \begin{array}{|cccc}
Y & X Y & X^{2} Y & X^{3} Y \\
1 & X & X^{2} & X^{3}
\end{array} \quad \quad \begin{array}{|cccc}
3 & 5 & 7 & 9 \\
0 & 2 & 4 & 6
\end{array}
$$

$w_{H}(\vec{c}) \geq \# w\left(\Delta_{\prec_{w}}\left(I_{4}\right)\right) \cap\left(w(Y)+w\left(\Delta_{\prec_{w}}\left(I_{4}\right)\right)\right)$.
(what we hit is what we get).

$$
\begin{aligned}
& I_{4}=\left\langle X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\rangle . \\
& \Delta_{\prec_{w}\left(I_{4}\right)} \quad \begin{array}{|cccc}
Y & X Y & X^{2} Y & X^{3} Y \\
1 & X & X^{2} & X^{3}
\end{array} \quad \quad \begin{array}{|llll}
3 & 5 & 7 & 9 \\
0 & 2 & 4 & 6
\end{array} \\
& \vec{c}=\left(F\left(P_{1}\right), \ldots, F\left(P_{8}\right)\right) \\
& \operatorname{Im}(F)=Y \\
& w_{H}(\vec{c})=\#\left\{M \in \Delta_{\prec_{w}}\left(I_{4}\right) \mid M \notin \Delta_{\prec_{w}}\left(I_{4}+\langle F\rangle\right)\right\} . \\
& \text { YF rem } X^{3}-Y^{2}-Y=Y(Y+\cdots) \text { rem } X^{3}-Y^{2}-Y=X^{3}+\cdots \\
& w_{H}(\vec{c}) \geq \# w\left(\Delta_{\prec_{w}}\left(I_{4}\right)\right) \cap\left(w(Y)+w\left(\Delta_{\prec_{w}}\left(I_{4}\right)\right)\right) . \\
& \text { (what we hit is what we get). }
\end{aligned}
$$

$$
I_{9}=\left\langle X^{4}-Y^{3}-Y, X^{9}-X, Y^{9}-Y\right\rangle . \quad w(X)=3, w(Y)=4 .
$$

$\begin{array}{llllllllll}Y^{2} & X Y^{2} & X^{2} Y^{2} & x^{3} Y^{2} & X^{4} Y^{2} & X^{5} Y^{2} & X^{6} Y^{2} & X^{7} Y^{2} & X^{8} Y^{2}\end{array}$ $\begin{array}{llllllll}Y & X Y & X^{2} Y & x^{3} Y & X^{4} Y & X^{5} Y & X^{6} Y & X^{7} Y\end{array} X^{8} Y$

1	X	X^{2}	x^{3}	X^{4}	X^{5}	X^{6}	X^{7}	X^{8}

8	$\underline{11}$	$\underline{14}$	$\underline{17}$	$\underline{20}$	$\underline{23}$	$\underline{26}$	$\underline{29}$	$\underline{32}$
4	7	10	13	$\underline{16}$	$\underline{19}$	$\underline{22}$	$\underline{25}$	$\underline{28}$
0	3	6	9	12	$\underline{15}$	$\underline{18}$	$\underline{21}$	$\underline{24}$

19	16	13	10	7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

One-point algebraic geometric codes:
P_{1}, \ldots, P_{n}, Q rational places of function field over \mathbb{F}_{q}.
To construct $C_{\mathcal{L}}\left(D=P_{1}+\cdots+P_{n}, v Q\right)$ we need basis for: $\cup_{s=0}^{v} \mathcal{L}(s Q) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(s Q)$.

Everything, can be translated into affine variety description: $\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / / \quad\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{V}_{\mathbb{F}_{q}}(I)$. Affine variety description includes determination of minimum distance via footprint bound.

One-point algebraic geometric codes:
P_{1}, \ldots, P_{n}, Q rational places of function field over \mathbb{F}_{q}.
To construct $C_{\mathcal{L}}\left(D=P_{1}+\cdots+P_{n}, v Q\right)$ we need basis for:
$\cup_{s=0}^{v} \mathcal{L}(s Q) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(s Q)$.
Everything, can be translated into affine variety description:
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / I \quad\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{V}_{\mathbb{F}_{q}}(I)$.
Affine variety description includes determination of minimum distance via footprint bound.

Weierstrass semigroup:
$H(Q)=-\nu_{Q}\left(\cup_{s=0}^{\infty} \mathcal{L}(s Q)\right)=\left\langle w_{1}, \ldots, w_{m}\right\rangle$.
Definition: Given weights w_{1}, \ldots, w_{m} define $w\left(\vec{X}^{\vec{\alpha}}\right)=\alpha_{1} w_{1}+\cdots+\alpha_{m} w_{m}$. Define \prec_{w} by $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\vec{\beta}}$ if

- $w\left(\vec{X}^{\vec{\alpha}}\right)<w\left(\vec{X}^{\vec{\beta}}\right)$
- or $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$
$\left(\prec_{\mathcal{M}}\right.$ can be anything, for instance $\left.\prec_{\text {lex }}\right)$

Weierstrass semigroup:
$H(Q)=-\nu_{Q}\left(\cup_{s=0}^{\infty} \mathcal{L}(s Q)\right)=\left\langle w_{1}, \ldots, w_{m}\right\rangle$.
Definition: Given weights w_{1}, \ldots, w_{m} define $w\left(\vec{X}^{\vec{\alpha}}\right)=\alpha_{1} w_{1}+\cdots+\alpha_{m} w_{m}$. Define \prec_{w} by $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\vec{\beta}}$ if

- $w\left(\vec{X}^{\vec{\alpha}}\right)<w\left(\vec{X}^{\vec{\beta}}\right)$
- or $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$
$\left(\prec_{\mathcal{M}}\right.$ can be anything, for instance $\left.\prec_{\text {lex }}\right)$
Example: $w(X)=q, w(Y)=q+1, \prec_{\mathcal{M}}=\prec_{\text {lex }}$ with $X \prec_{\text {lex }} Y$. $\overline{F(X, Y)}=X^{q+1}-Y^{q}-Y, w\left(X^{q+1}\right)=w\left(Y^{q}\right)=q(q+1)$ and $\operatorname{lm}(F)=Y^{q}$.

Order domain conditions:

$I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle \subseteq \mathbb{F}[\vec{X}]$ and w_{1}, \ldots, w_{m} satisfy ODC if:

1. $\left\{F_{1}, \ldots, F_{s}\right\}$ is a Gröbner basis w.r.t. \prec_{w}.
2. $F_{i}, i=1, \ldots, s$ contains exactly two monomials of highest weight.
3. No two monomials in $\Delta_{\prec_{w}}\left(\left\langle F_{1}, \ldots, F_{s}\right\rangle\right)$ are of the same weight.

Order domain conditions:

$I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle \subseteq \mathbb{F}[\vec{X}]$ and w_{1}, \ldots, w_{m} satisfy ODC if:

1. $\left\{F_{1}, \ldots, F_{s}\right\}$ is a Gröbner basis w.r.t. \prec_{w}.
2. $F_{i}, i=1, \ldots, s$ contains exactly two monomials of highest weight.
3. No two monomials in $\Delta_{\prec_{w}}\left(\left\langle F_{1}, \ldots, F_{s}\right\rangle\right)$ are of the same weight.

Example: $I=\left\langle X^{q+1}-Y^{q}-Y\right\rangle \subseteq \mathbb{F}_{q^{2}}[X, Y]$

1. OK
2. OK
3. $\Delta_{\prec_{w}}(I)=\left\{X^{i} Y^{j} \mid 0 \leq j<q, 0 \leq i\right\}$ OK

Theorem (Miura-1997, Pellikaan-2001):
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}[\vec{X}] / I$ where I and corresponding weights satisfy order domain conditions.

Corollary:

$=\operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(M\left(P_{1}\right), \ldots, M\left(P_{n}\right)\right) \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq v\right\}$.

Footprint method better than Goppa bound. (Andersen-G)

Theorem (Miura-1997, Pellikaan-2001):
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}[\vec{X}] / I$ where I and corresponding weights satisfy order domain conditions.

Corollary:

$$
\begin{aligned}
& C_{\mathcal{L}}\left(P_{1}+\cdots+P_{n}, v Q\right) \\
= & \operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(M\left(P_{1}\right), \ldots, M\left(P_{n}\right)\right) \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq v\right\} .
\end{aligned}
$$

Footprint method better than Goppa bound. (Andersen-G)

Theorem (Miura-1997, Pellikaan-2001):
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}[\vec{X}] / I$ where I and corresponding weights satisfy order domain conditions.

Corollary:

$$
\begin{aligned}
& C_{\mathcal{L}}\left(P_{1}+\cdots+P_{n}, v Q\right) \\
= & \operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(M\left(P_{1}\right), \ldots, M\left(P_{n}\right)\right) \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq v\right\} .
\end{aligned}
$$

Footprint method better than Goppa bound. (Andersen-G)

Weierstrass semigroup $\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle$.
Corollary: (G-Matsumoto 2009)
A function field having Λ as a Weierstrass semigroup can at most have

$$
\#\left(\Lambda \backslash \cup_{i=1}^{m}\left(q \lambda_{i}+\Lambda\right)\right)+1
$$

rational places.

- Term " $q \lambda_{i}$ " comes from $X_{i}^{q}-X_{i}$.
- Term " +1 " corresponds to the place with Weierstrass semigroup Λ.
- Better than Serre-bound for small q.
- Gives a way for excluding possible Weierstrass semigroups when genus and number of zeros are known.
- Order domains are generalizations of $\cup_{s=0}^{\infty} \mathcal{L}(s Q)$.
- For transcendence degree r, weights are in \mathbb{N}_{0}^{r} (when finitely generated) G-Pellikaan 2002.
- Gives a way of generalizing algebraic geometric codes to higher transcendence degree. Think of Reed-Muller code as higher transcendence degree version of Reed-Solomon code.
- Order domain conditions and Pellikaan-Miura correspondence also work for higher transcendence degrees G-Pellikaan 2002.
- So does methods for estimating parameters.
- Descriptions can be abstract or be given as concrete quotient ring.
- Order domains are generalizations of $\cup_{s=0}^{\infty} \mathcal{L}(s Q)$.
- For transcendence degree r, weights are in \mathbb{N}_{0}^{r} (when finitely generated) G-Pellikaan 2002.
- Gives a way of generalizing algebraic geometric codes to higher transcendence degree. Think of Reed-Muller code as higher transcendence degree version of Reed-Solomon code.
- Order domain conditions and Pellikaan-Miura correspondence also work for higher transcendence degrees G-Pellikaan 2002
- So does methods for estimating parameters.
- Descriptions can be abstract or be given as concrete quotient ring.
- Order domains are generalizations of $\cup_{s=0}^{\infty} \mathcal{L}(s Q)$.
- For transcendence degree r, weights are in \mathbb{N}_{0}^{r} (when finitely generated) G-Pellikaan 2002.
- Gives a way of generalizing algebraic geometric codes to higher transcendence degree. Think of Reed-Muller code as higher transcendence degree version of Reed-Solomon code.
- Order domain conditions and Pellikaan-Miura correspondence also work for higher transcendence degrees G-Pellikaan 2002.
- So does methods for estimating parameters.
- Descriptions can be abstract or be given as concrete quotient ring.
- Order domains are generalizations of $\cup_{s=0}^{\infty} \mathcal{L}(s Q)$.
- For transcendence degree r, weights are in \mathbb{N}_{0}^{r} (when finitely generated) G-Pellikaan 2002.
- Gives a way of generalizing algebraic geometric codes to higher transcendence degree. Think of Reed-Muller code as higher transcendence degree version of Reed-Solomon code.
- Order domain conditions and Pellikaan-Miura correspondence also work for higher transcendence degrees G-Pellikaan 2002.
- So does methods for estimating parameters.
- Descriptions can be abstract or be given as concrete quotient ring.
- Order domains are generalizations of $\cup_{s=0}^{\infty} \mathcal{L}(s Q)$.
- For transcendence degree r, weights are in \mathbb{N}_{0}^{r} (when finitely generated) G-Pellikaan 2002.
- Gives a way of generalizing algebraic geometric codes to higher transcendence degree. Think of Reed-Muller code as higher transcendence degree version of Reed-Solomon code.
- Order domain conditions and Pellikaan-Miura correspondence also work for higher transcendence degrees G-Pellikaan 2002.
- So does methods for estimating parameters.
- Descriptions can be abstract or be given as concrete quotient ring.

The footprint-method applied to order domain conditions:

$$
\begin{aligned}
I & =\left\langle F_{1}\left(\vec{X}, \ldots, F_{s}(\vec{X})\right\rangle, \Delta_{\prec_{w}}\left(I_{q}\right)=\left\{M_{1}, \ldots, M_{n}\right\} .\right. \\
\vec{c} & =\operatorname{ev}(F), \operatorname{lm}(F)=M_{i} .
\end{aligned}
$$

$$
\begin{aligned}
w_{H}(\vec{c})= & \#\left(\Delta_{\prec_{w}}\left(I_{q}\right) \backslash \Delta_{\prec_{w}}\left(I_{q}+\langle F\rangle\right)\right) \\
= & \#\left\{M \in \Delta_{\prec_{w}}\left(I_{q}\right) \mid M\right. \text { is a leading monomial } \\
& \left.\quad \text { of a polynomial in } I_{q}+\langle F\rangle\right\}
\end{aligned}
$$

$\geq \#$ monomials in $\Delta_{\prec_{w}}\left(I_{q}\right)$ hit by M_{i} (using F_{1}, \ldots, F_{s})

$$
=\#\left(w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \cap\left(w\left(M_{i}\right)+w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right)\right)\right)
$$

Linear code level:

$$
\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\} \text { and } \mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\} \text { bases for } \mathbb{F}_{q}^{n} .
$$

$$
\{\overrightarrow{0}\}=L_{0} \subsetneq L_{1}=\operatorname{Span}\left\{\vec{b}_{1}\right\} \subsetneq L_{2}=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}\right\} \subsetneq \cdots \subsetneq L_{n}=\mathbb{F}_{q}^{n}
$$

$$
\bar{\rho}_{\mathcal{B}}(\vec{c})=i, \text { if } \vec{c} \in L_{i} \backslash L_{i-1} .
$$

If a supporting algebra is given then information can be extracted regarding above.

Think of $\mathcal{B}=\mathcal{U}$ corresponding to $\left\{1, X, X^{2}, \ldots, X^{q-1}\right\}$.

Linear code level:
$\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ bases for \mathbb{F}_{q}^{n}.
$\{\overrightarrow{0}\}=L_{0} \subsetneq L_{1}=\operatorname{Span}\left\{\vec{b}_{1}\right\} \subsetneq L_{2}=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}\right\} \subsetneq \cdots \subsetneq L_{n}=\mathbb{F}_{q}^{n}$.
$\bar{\rho}_{\mathcal{B}}(\vec{c})=i$, if $\vec{c} \in L_{i} \backslash L_{i-1}$.
(i, j) is OWB if $\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i^{\prime}} * \vec{u}_{j}\right)<\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)$ for $i^{\prime}=1, \ldots, i-1$.
If a supporting algebra is given then information can be extracted regarding above.

Think of $\mathcal{B}=\mathcal{U}$ corresponding to $\left\{1, X, X^{2}\right.$,

Linear code level:
$\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ bases for \mathbb{F}_{q}^{n}.
$\{\overrightarrow{0}\}=L_{0} \subsetneq L_{1}=\operatorname{Span}\left\{\vec{b}_{1}\right\} \subsetneq L_{2}=\operatorname{Span}\left\{\vec{b}_{1}, \vec{b}_{2}\right\} \subsetneq \cdots \subsetneq L_{n}=\mathbb{F}_{q}^{n}$.
$\bar{\rho}_{\mathcal{B}}(\vec{c})=i$, if $\vec{c} \in L_{i} \backslash L_{i-1}$.
(i, j) is OWB if $\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i^{\prime}} * \vec{u}_{j}\right)<\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)$ for $i^{\prime}=1, \ldots, i-1$.
If a supporting algebra is given then information can be extracted regarding above.

Think of $\mathcal{B}=\mathcal{U}$ corresponding to $\left\{1, X, X^{2}, \ldots, X^{q-1}\right\}$.
$\operatorname{ev}\left(X^{i}\right) * \operatorname{ev}\left(X^{j}\right)=\operatorname{ev}\left(X^{i+j}\right)$ applied when $i+j<q$.

To hit:

$$
\begin{aligned}
\bar{\sigma}(i)=\#\{l \mid \exists j \text { such that }(i, j) & \text { is OWB } \\
& \text { and } \left.\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=I\right\}
\end{aligned}
$$

Theorem:

If $\bar{\rho}_{\mathcal{B}}(\vec{c})=i$ then $w_{H}(\vec{c}) \geq \bar{\sigma}(i)$.

$\left\{\vec{c} * \vec{u}_{j_{1}}, \cdots, \vec{c} * \vec{u}_{j_{\sigma}}\right\}$ is linearly independent.
Hence, $\vec{c} * \operatorname{Span}\left\{\vec{u}_{j_{1}}, \cdots \vec{u}_{j_{\sigma}}\right\}$ is of dimension σ.
But $\left\{\vec{c} * \vec{d} \mid \vec{d} \in \mathbb{F}_{q}^{n}\right\}$ is of dimension $w_{H}(\vec{c})$.

To hit:

$$
\begin{array}{r}
\bar{\sigma}(i)=\#\{I \mid \exists j \text { such that }(i, j) \text { is OWB } \\
\left.\quad \text { and } \bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=I\right\}
\end{array}
$$

Theorem:

If $\bar{\rho}_{\mathcal{B}}(\vec{c})=i$ then $w_{H}(\vec{c}) \geq \bar{\sigma}(i)$.

$\left\{\vec{c} * \vec{u}_{j_{1}}, \cdots, \vec{c} * \vec{u}_{j_{\sigma}}\right\}$ is linearly independent.
Hence, $\vec{c} * \operatorname{Span}\left\{\vec{u}_{j_{1}}, \cdots \vec{u}_{j_{\sigma}}\right\}$ is of dimension σ.
But $\left\{\vec{c} * \vec{d} \mid \vec{d} \in \mathbb{F}_{q}^{n}\right\}$ is of dimension $w_{H}(\vec{c})$.

To hit:

$$
\begin{array}{r}
\bar{\sigma}(i)=\#\{I \mid \exists j \text { such that }(i, j) \text { is OWB } \\
\left.\quad \text { and } \bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=I\right\}
\end{array}
$$

Theorem:
If $\bar{\rho}_{\mathcal{B}}(\vec{c})=i$ then $w_{H}(\vec{c}) \geq \bar{\sigma}(i)$.
Proof: Assume $\left(i, j_{1}\right),\left(i, j_{2}\right), \ldots,\left(i, j_{\sigma}\right)$ hits $I_{1}, I_{2}, \ldots, I_{\sigma}$.
$\left\{\vec{c} * \vec{u}_{j_{1}}, \cdots, \vec{c} * \vec{u}_{j_{\sigma}}\right\}$ is linearly independent.
Hence, $\vec{c} * \operatorname{Span}\left\{\vec{u}_{j_{1}}, \cdots \vec{u}_{j_{\sigma}}\right\}$ is of dimension σ.
But $\left\{\vec{c} * \vec{d} \mid \vec{d} \in \mathbb{F}_{q}^{n}\right\}$ is of dimension $w_{H}(\vec{c})$.

To be hit:

$\bar{\mu}(I)=\#\{i \mid \exists j$ such that (i, j) is OWB

$$
\text { and } \left.\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=l\right\}
$$

Theorem:

Let I be such that $\vec{c} \cdot \vec{b}_{I} \neq 0$ but $\vec{c} \cdot \vec{b}_{I^{\prime}}=0$ for all $I^{\prime}<I$. Then $w_{H}(\vec{c}) \geq \bar{\mu}(I)$.

Proof: Same type of arguments as before.

Primary code: minimum distance \geq smallest $\bar{\sigma}(i)$ value among generating vectors.

Dual code: minimum distance \geq smallest $\bar{\mu}$ value among non-parity-check vectors.

To be hit:
$\bar{\mu}(I)=\#\{i \mid \exists j$ such that (i, j) is OWB

$$
\text { and } \left.\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=l\right\}
$$

Theorem:
Let I be such that $\vec{c} \cdot \vec{b}_{I} \neq 0$ but $\vec{c} \cdot \vec{b}_{I^{\prime}}=0$ for all $I^{\prime}<I$. Then $w_{H}(\vec{c}) \geq \bar{\mu}(I)$.

Proof: Same type of arguments as before.
Primary code: minimum distance \geq smallest $\bar{\sigma}(i)$ value among generating vectors.

Dual code: minimum distance \geq smallest $\bar{\mu}$ value among non-parity-check vectors.

To be hit:
$\bar{\mu}(I)=\#\{i \mid \exists j$ such that (i, j) is OWB

$$
\text { and } \left.\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)=l\right\}
$$

Theorem:
Let I be such that $\vec{c} \cdot \vec{b}_{I} \neq 0$ but $\vec{c} \cdot \vec{b}_{I^{\prime}}=0$ for all $I^{\prime}<I$. Then $w_{H}(\vec{c}) \geq \bar{\mu}(I)$.

Proof: Same type of arguments as before.
Primary code: minimum distance \geq smallest $\bar{\sigma}(i)$ value among generating vectors.

Dual code: minimum distance \geq smallest $\bar{\mu}$ value among non-parity-check vectors.

Recent results (with Matsumoto and Ruano):
$\mathcal{G}=\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}, \mathcal{H}=\left\{\vec{h}_{1}, \ldots, \vec{h}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ with

$$
\left[\begin{array}{c}
\vec{g}_{1}^{T} \\
\vdots \\
\vec{g}_{n}^{T}
\end{array}\right]\left[\vec{h}_{n} \cdots \vec{h}_{1}\right]=I
$$

then very nice translation between $\bar{\rho}_{\mathcal{G}}, \bar{\sigma}$ with respect to $(\mathcal{G}, \mathcal{U})$ on the one side and $\bar{\rho}_{\mathcal{H}}, \bar{\mu}$ with respect to $(\mathcal{H}, \mathcal{U})$ on the other side. Primary code description \Leftrightarrow dual code description.

Recent results (with Matsumoto and Ruano):
$\mathcal{G}=\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}, \mathcal{H}=\left\{\vec{h}_{1}, \ldots, \vec{h}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ with

$$
\left[\begin{array}{c}
\vec{g}_{1}^{T} \\
\vdots \\
\vec{g}_{n}^{T}
\end{array}\right]\left[\vec{h}_{n} \cdots \vec{h}_{1}\right]=I
$$

then very nice translation between $\bar{\rho}_{\mathcal{G}}, \bar{\sigma}$ with respect to $(\mathcal{G}, \mathcal{U})$ on the one side and $\bar{\rho}_{\mathcal{H}}, \bar{\mu}$ with respect to $(\mathcal{H}, \mathcal{U})$ on the other side. Primary code description \Leftrightarrow dual code description.

- Feng-Rao majority decoding algorithm for dual codes (usually described by means of algebra) can be formulated in linear code set-up (Matsumoto-Miura 2000). Works for WB.
- Decoding of algebraically defined primary codes: Go to linear code level. Detect dual description and use linear version of decoding algorithm.

Recent results (with Matsumoto and Ruano):
$\mathcal{G}=\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}, \mathcal{H}=\left\{\vec{h}_{1}, \ldots, \vec{h}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ with

$$
\left[\begin{array}{c}
\vec{g}_{1}^{T} \\
\vdots \\
\vec{g}_{n}^{T}
\end{array}\right]\left[\vec{h}_{n} \cdots \vec{h}_{1}\right]=I
$$

then very nice translation between $\bar{\rho}_{\mathcal{G}}, \bar{\sigma}$ with respect to $(\mathcal{G}, \mathcal{U})$ on the one side and $\bar{\rho}_{\mathcal{H}}, \bar{\mu}$ with respect to $(\mathcal{H}, \mathcal{U})$ on the other side. Primary code description \Leftrightarrow dual code description.

- Feng-Rao majority decoding algorithm for dual codes (usually described by means of algebra) can be formulated in linear code set-up (Matsumoto-Miura 2000). Works for WB.
- Decoding of algebraically defined primary codes: Go to linear code level. Detect dual description and use linear version of decoding algorithm.

Recent results (with Matsumoto and Ruano):
$\mathcal{G}=\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}, \mathcal{H}=\left\{\vec{h}_{1}, \ldots, \vec{h}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ with

$$
\left[\begin{array}{c}
\vec{g}_{1}^{T} \\
\vdots \\
\vec{g}_{n}^{T}
\end{array}\right]\left[\vec{h}_{n} \cdots \vec{h}_{1}\right]=I
$$

then very nice translation between $\bar{\rho}_{\mathcal{G}}, \bar{\sigma}$ with respect to $(\mathcal{G}, \mathcal{U})$ on the one side and $\bar{\rho}_{\mathcal{H}}, \bar{\mu}$ with respect to $(\mathcal{H}, \mathcal{U})$ on the other side. Primary code description \Leftrightarrow dual code description.

- Feng-Rao majority decoding algorithm for dual codes (usually described by means of algebra) can be formulated in linear code set-up (Matsumoto-Miura 2000). Works for WB.
- Decoding of algebraically defined primary codes: Go to linear code level. Detect dual description and use linear version of decoding algorithm.
- Feng-Rao bound for dual codes strongly related to footprint

$$
R=\mathbb{F}_{5}[X, Y] .
$$

$$
\begin{aligned}
& \left\{P_{1}=(1,1), P_{2}=(1,2), P_{3}=(1,3), P_{4}=(2,1), \ldots, P_{9}=(3,3)\right\} \subsetneq \mathbb{F}_{5}^{2} \\
& \vec{g}_{1}=\operatorname{ev}(1), \vec{g}_{2}=\operatorname{ev}(X), \vec{g}_{3}=\operatorname{ev}(Y), \vec{g}_{4}=\operatorname{ev}\left(X^{2}\right), \vec{g}_{5}=\operatorname{ev}(X Y), \\
& \vec{g}_{6}=\operatorname{ev}\left(Y^{2}\right), \vec{g}_{7}=\operatorname{ev}\left(X^{2} Y\right), \vec{g}_{8}=\operatorname{ev}\left(X Y^{2}\right), \vec{g}_{9}=\operatorname{ev}\left(X^{2} Y^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \vec{h}_{1}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+X^{2}\right. \\
& \vec{h}_{2}=\operatorname{ev}\left(X^{2} Y^{2}+3 X Y^{2}+X\right. \\
& \vec{h}_{3}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+3 X\right. \\
& \vec{h}_{4}=\operatorname{ev}\left(X Y^{2}+Y^{2}+X Y+\right. \\
& \vec{h}_{5}=\operatorname{ev}\left(X^{2} Y^{2}+3 X Y^{2}+3 X\right. \\
& \vec{h}_{6}=\operatorname{ev}\left(X^{2} Y+X Y+X^{2}+\right. \\
& \vec{h}_{7}=\operatorname{ev}\left(X Y^{2}+Y^{2}+3 X Y\right. \\
& \vec{h}_{8}=\operatorname{ev}\left(X^{2} Y+3 X Y+X^{2}\right. \\
& \vec{h}_{9}=\operatorname{ev}(X Y+Y+X+1) .
\end{aligned}
$$

$R=\mathbb{F}_{5}[X, Y]$.

$$
\left\{P_{1}=(1,1), P_{2}=(1,2), P_{3}=(1,3), P_{4}=(2,1), \ldots, P_{9}=(3,3)\right\} \subsetneq \mathbb{F}_{5}^{2}
$$

$$
\vec{g}_{1}=\mathrm{ev}(1), \vec{g}_{2}=\mathrm{ev}(X), \vec{g}_{3}=\mathrm{ev}(Y), \vec{g}_{4}=\mathrm{ev}\left(X^{2}\right), \vec{g}_{5}=\mathrm{ev}(X Y),
$$

$$
\vec{g}_{6}=\operatorname{ev}\left(Y^{2}\right), \vec{g}_{7}=\operatorname{ev}\left(X^{2} Y\right), \vec{g}_{8}=\operatorname{ev}\left(X Y^{2}\right), \vec{g}_{9}=\operatorname{ev}\left(X^{2} Y^{2}\right)
$$

$\vec{h}_{1}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+X^{2} Y+X Y\right)$,
$\vec{h}_{2}=\operatorname{ev}\left(X^{2} Y^{2}+3 X Y^{2}+X^{2} Y+Y^{2}+3 X Y+Y\right)$,
$\vec{h}_{3}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+3 X^{2} Y+3 X Y+X^{2}+X\right)$,
$\vec{h}_{4}=\operatorname{ev}\left(X Y^{2}+Y^{2}+X Y+Y\right)$,
$\vec{h}_{5}=\operatorname{ev}\left(X^{2} Y^{2}+3 X Y^{2}+3 X^{2} Y+Y^{2}+4 X Y+X^{2}+3 Y+3 X+1\right)$,
$\vec{h}_{6}=\operatorname{ev}\left(X^{2} Y+X Y+X^{2}+X\right)$,
$\vec{h}_{7}=\operatorname{ev}\left(X Y^{2}+Y^{2}+3 X Y+3 Y+X+1\right)$,
$\vec{h}_{8}=\operatorname{ev}\left(X^{2} Y+3 X Y+X^{2}+Y+3 X+1\right)$,
$\vec{h}_{9}=\operatorname{ev}(X Y+Y+X+1)$.

Information from

- function field theory,
- Gröbner basis theory,
- algebra,
- order domain theory
translates easily to information on $\bar{\rho}$ and OWB, WWB or WB.
Multiplication corresponds to componentwise product.

Information from

- function field theory,
- Gröbner basis theory,
- algebra,
- order domain theory
translates easily to information on $\bar{\rho}$ and OWB, WWB or WB.
Multiplication corresponds to componentwise product.
Recent list decoding algorithms for algebraic geometric codes decode beoyond the bound for primary codes.
(Lee-Bras-Amorós-O'Sullivan 2011, G-Matsumoto-Ruano 2012, Lee-Bras-Amorós-O'Sullivan 2012).

Everything said so far regarding minimum distance can be lifted to generalized Hamming weights.
$\operatorname{Supp}(D)=\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right.$ for some $\left.\vec{c} \in D\right\}$.
$d_{i}(C)=\min \{\# \operatorname{Supp}(D) \mid D \subseteq C, \operatorname{dim}(D)=i\}$
Give information about behaviour of

- Wiretan channel of type II.
- Secret sharing schemes.

Everything said so far regarding minimum distance can be lifted to generalized Hamming weights.
$\operatorname{Supp}(D)=\left\{i \in\{1, \ldots, n\} \mid c_{i} \neq 0\right.$ for some $\left.\vec{c} \in D\right\}$.
$d_{i}(C)=\min \{\# \operatorname{Supp}(D) \mid D \subseteq C, \operatorname{dim}(D)=i\}$
Give information about behaviour of

- Wiretap channel of type II.
- Secret sharing schemes.

Generalized Reed-Muller codes:

Y^{4}	$X Y^{4}$	$X^{2} Y^{4}$	$X^{3} Y^{4}$	$X^{4} Y^{4}$						
Y^{3}	$X Y^{3}$	$X^{2} Y^{3}$	$X^{3} Y^{3}$	$X^{4} Y^{3}$						
Y^{2}	$X Y^{2}$	$X^{2} Y^{2}$	$X^{3} Y^{2}$	$X^{4} Y^{2}$						
Y	$X Y$	$X^{2} Y$	$X^{3} Y$	$X^{4} Y$						
1	X	X^{2}	X^{3}	X^{4}	$\quad \quad$	5	4	3	2	1
:---:	:---:	:---:	:---:	:---:						
$\frac{10}{15}$	8	6	4	2						
20	$\underline{12}$	9	6	3						
25	20	$\underline{12}$	8	4						
15	$\underline{10}$	5								

- Minimum distance corresponds to value on border (can be realized as product of linear factors).
- Second smallest weight: What happens if leading monomial is on the border, but minimal value is not realized?
smallest weigth IS second smallest number above for degrees
- For $m=2$ the degrees > q are easily solved. G-2008

Generalized Reed-Muller codes:

Y^{4}	$X Y^{4}$	$X^{2} Y^{4}$	$X^{3} Y^{4}$	$X^{4} Y^{4}$						
Y^{3}	$X Y^{3}$	$X^{2} Y^{3}$	$X^{3} Y^{3}$	$X^{4} Y^{3}$						
Y^{2}	$X Y^{2}$	$X^{2} Y^{2}$	$X^{3} Y^{2}$	$X^{4} Y^{2}$						
Y	$X Y$	$X^{2} Y$	$X^{3} Y$	$X^{4} Y$						
1	X	X^{2}	X^{3}	X^{4}	$\quad \quad$	5	4	3	2	1
:---:	:---:	:---:	:---:	:---:						
10	8	6	4	2						
15	$\underline{12}$	9	6	3						
20	16	$\underline{12}$	8	4						
25	20	15	$\underline{10}$	5						

- Minimum distance corresponds to value on border (can be realized as product of linear factors).
- Second smallest weight: What happens if leading monomial is on the border, but minimal value is not realized?
- Use Buchberger's algorithm at a theoretical level. Second smallest weigth IS second smallest number above for degrees up to q^{m-1}. G-2008
- For $m=2$ the degrees $>q$ are easily solved. G-2008
- Ericson-1974, Enough to know the case with two variables.

Conclusion:

- The variety of levels can sometimes help in realizing what is "really" going on.
- Lower level descriptions often captures what is going on, but might appear technical.

