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Linear code = a subspace.

Operations are:

I Vector addition.

I Scalar multiplication.

[n, k, d ] the usual parameters.

To deal with d (and k and even n) the compontwise product is
useful:

I (c1, . . . , cn) ∗ (d1, . . . , dn) = (c1d1, . . . , cndn).
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Claim: Code constructions with a supporting algebra:

I algebraic geometric codes,

I Reed–Muller codes and relatives,

I affine variety codes,

are about getting information on the componentwise product.

Multiplication
in

”higher”algebra

⇒
(⇐)

Multiplication
in

quotient ring

⇓ ⇓

Componentwise product at code level
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Dual code
Parity check matrix

Primary code
Generator matrix

The usual Feng–Rao bound

(Feng–Rao bound
for dual codes)

Order bound

⇔

The Andersen–G bound

(Feng–Rao bound
for primary codes)

Footprint bound
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This talk:

I connection between the levels of description,

I connection between dual and primary

Results:

I Consequences of the above connections.

I Information derived from medium and low level descriptions.

Important results that are not covered:

I Higher level results such as Beelen bound,
Duursma–Kirov–Park bound and list decoding of algebraic
geometric codes by Lee–Bras-Amorós–O’Sullivan’s method.
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Ideal J ⊆ F[~X ]

The footprint:

∆≺(J) = {~X ~α | ~X ~α is not a leading monomial of any polynomial in J}

I ⊆ Fq[~X ], Iq = I + 〈X q
1 − X1, . . . ,X

q
m − Xm〉.

The footprint bound in a special case:

#VFq(Iq) = #∆≺(Iq).
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Iq = 〈X q − X ,Y q − Y 〉

∆≺(Iq) = {X iY j | 0 ≤ i , j < q}

#VFq(Iq) = q2

Iq2 = 〈X q+1 − Y q − Y ,X q2 − X ,Y q2 − Y 〉.

Choose monomial ordering with xq+1 ≺ Y q,

∆≺(Iq2) ⊆ {X iY j | 0 ≤ i < q2, 0 ≤ j < q}

#VFq2
(Iq2) ≤ q · q2 = q3

Study of norm/trace gives q3 zeros.
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Gröbner basis for J w.r.t. ≺ is a basis for J such that ∆≺(J) can
easily be read off.

G = {G1, . . . ,Gs} ⊆ J is Gröbner basis for J w.r.t. ≺ iff any
monomial in lm(J) is divisible by some lm(Gi ).

Gröbner basis for Iq gives exact information on #VFq(Iq).
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VFq(Iq) = {P1, . . . ,Pn}.

Codeword ~c = (F (P1), . . . ,F (Pn)).

wH(~c) = n −#∆≺(Iq + 〈F 〉) (n minus number of commen zeros).

Information on which leading monomials occour in the code
construction gives information on minimum distance.

Improved code construction straight forward.

Olav Geil, Aalborg University, Denmark The Feng–Rao bounds



VFq(Iq) = {P1, . . . ,Pn}.

Codeword ~c = (F (P1), . . . ,F (Pn)).

wH(~c) = n −#∆≺(Iq + 〈F 〉) (n minus number of commen zeros).

Information on which leading monomials occour in the code
construction gives information on minimum distance.

Improved code construction straight forward.

Olav Geil, Aalborg University, Denmark The Feng–Rao bounds



VFq(Iq) = {P1, . . . ,Pn}.

Codeword ~c = (F (P1), . . . ,F (Pn)).

wH(~c) = n −#∆≺(Iq + 〈F 〉) (n minus number of commen zeros).

Information on which leading monomials occour in the code
construction gives information on minimum distance.

Improved code construction straight forward.

Olav Geil, Aalborg University, Denmark The Feng–Rao bounds



{M + J | M ∈ ∆≺(J)} is a basis for F[~X ]/J
as a vectorspace over F.

G =


M1(P1) · · · M1(Pn)
M2(P1) · · · M2(Pn)

...
. . .

...
Mk(P1) · · · Mk(Pn)

 , M1, . . . ,Mk ∈ ∆≺(Iq),Mi 6= Mj

is a code of dimension k
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Reed–Muller codes:

Let I5 = 〈X 5 − X ,Y 5 − Y 〉 and

~c = (F (P1), . . . ,F (Pn=25)), with lm(F ) = X iY j .

We get wH(~c) = n −#∆≺(I5 + 〈F 〉)≥ (5− i)(5− j).

Y 4 XY 4 X 2Y 4 X 3Y 4 X 4Y 4

Y 3 XY 3 X 2Y 3 X 3Y 3 X 4Y 3

Y 2 XY 2 X 2Y 2 X 3Y 2 X 4Y 2

Y XY X 2Y X 3Y X 4Y
1 X X 2 X 3 X 4

5 4 3 2 1
10 8 6 4 2
15 12 9 6 3
20 16 12 8 4
25 20 15 10 5

RM5(4, 2) is [25, 15, 5]
Improved code construction gives [25, 17, 5]
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Hermitian codes:

I = 〈X q+1 − Y q − Y 〉, Iq2 = I + 〈X q2 − X ,Y q2 − Y 〉.

w(X iY j) = iq + j(q + 1)

X sY t ≺w X uY v

I if w(X sY t) < w(X uY v )

I or w(X sY t) = w(X uY v ) and t < v

Weighted degree lexicographic ordering.
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I4 = 〈X 3 − Y 2 − Y ,X 4 − X ,Y 4 − Y 〉.

∆≺w (I4)
Y XY X 2Y X 3Y
1 X X 2 X 3

3 5 7 9
0 2 4 6

~c = (F (P1), . . . ,F (P8))

lm(F ) = Y

wH(~c) = #{M ∈ ∆≺w (I4) | M /∈ ∆≺w (I4 + 〈F 〉)}.

YF rem X 3−Y 2−Y = Y (Y +· · · ) rem X 3−Y 2−Y = X 3+· · ·

wH(~c) ≥ #w (∆≺w (I4)) ∩ (w(Y ) + w(∆≺w (I4))).

(what we hit is what we get).
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I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉. w(X ) = 3, w(Y ) = 4.

Y 2 XY 2 X 2Y 2 x3Y 2 X 4Y 2 X 5Y 2 X 6Y 2 X 7Y 2 X 8Y 2

Y XY X 2Y x3Y X 4Y X 5Y X 6Y X 7Y X 8Y
1 X X 2 x3 X 4 X 5 X 6 X 7 X 8

8 11 14 17 20 23 26 29 32
4 7 10 13 16 19 22 25 28
0 3 6 9 12 15 18 21 24

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3
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One–point algebraic geometric codes:

P1, . . . ,Pn,Q rational places of function field over Fq.

To construct CL(D = P1 + · · ·+ Pn, vQ) we need basis for:
∪vs=0L(sQ) ⊆

⋃∞
s=0 L(sQ).

Everything, can be translated into affine variety description:

∪∞s=0L(sQ) = Fq[X1, . . . ,Xm]/I {P1, . . . ,Pn} ⊆ VFq(I ).

Affine variety description includes determination of minimum
distance via footprint bound.
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Weierstrass semigroup:
H(Q) = −νQ

(
∪∞s=0 L(sQ)

)
= 〈w1, . . . ,wm〉.

Definition: Given weights w1, . . . ,wm define

w(~X ~α) = α1w1 + · · ·+ αmwm. Define ≺w by ~X ~α ≺w
~X
~β if

I w(~X ~α) < w(~X
~β)

I or w(~X ~α) = w(~X
~β) but ~X ~α ≺M ~X

~β

(≺M can be anything, for instance ≺lex)

Example: w(X ) = q,w(Y ) = q + 1, ≺M=≺lex with X ≺lex Y .
F (X ,Y ) = X q+1 − Y q − Y , w(X q+1) = w(Y q) = q(q + 1) and
lm(F ) = Y q.
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Order domain conditions:

I = 〈F1(~X ), . . . ,Fs(~X )〉 ⊆ F[~X ] and w1, . . . ,wm satisfy ODC if:

1. {F1, . . . ,Fs} is a Gröbner basis w.r.t. ≺w .

2. Fi , i = 1, . . . , s contains exactly two monomials of highest
weight.

3. No two monomials in ∆≺w (〈F1, . . . ,Fs〉) are of the same
weight.

Example: I = 〈X q+1 − Y q − Y 〉 ⊆ Fq2 [X ,Y ]

1. OK

2. OK

3. ∆≺w (I ) = {X iY j | 0 ≤ j < q, 0 ≤ i} OK
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Theorem (Miura–1997, Pellikaan–2001):

∪∞s=0L(sQ) = F[~X ]/I where I and corresponding weights satisfy
order domain conditions.

Corollary:

CL(P1 + · · ·+ Pn, vQ)

= SpanFq
{(M(P1), . . . ,M(Pn)) | M ∈ ∆≺w (Iq),w(M) ≤ v}.

Footprint method better than Goppa bound. (Andersen-G)
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Weierstrass semigroup Λ = 〈λ1, . . . , λm〉.

Corollary: (G–Matsumoto 2009)
A function field having Λ as a Weierstrass semigroup can at most
have

#

(
Λ\ ∪mi=1 (qλi + Λ)

)
+ 1

rational places.

I Term “qλi” comes from X q
i − Xi .

I Term “+1” corresponds to the place with Weierstrass
semigroup Λ.

I Better than Serre–bound for small q.

I Gives a way for excluding possible Weierstrass semigroups
when genus and number of zeros are known.
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I Order domains are generalizations of ∪∞s=0L(sQ).

I For transcendence degree r , weights are in Nr
0 (when finitely

generated) G–Pellikaan 2002.

I Gives a way of generalizing algebraic geometric codes to
higher transcendence degree. Think of Reed–Muller code as
higher transcendence degree version of Reed–Solomon code.

I Order domain conditions and Pellikaan–Miura correspondence
also work for higher transcendence degrees G–Pellikaan 2002.

I So does methods for estimating parameters.

I Descriptions can be abstract or be given as concrete quotient
ring.
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The footprint-method applied to order domain conditions:

I = 〈F1(~X , . . . ,Fs(~X )〉, ∆≺w (Iq) = {M1, . . . ,Mn}.

~c = ev(F ), lm(F ) = Mi .

wH(~c) = #
(
∆≺w (Iq)\∆≺w (Iq + 〈F 〉)

)
= #{M ∈ ∆≺w (Iq) | M is a leading monomial

of a polynomial in Iq + 〈F 〉}
≥ # monomials in ∆≺w (Iq) hit by Mi

(using F1, . . . ,Fs)

= #
(
w(∆≺w (Iq)) ∩

(
w(Mi ) + w(∆≺w (Iq))

))
.
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Linear code level:

B = {~b1, . . . ,~bn} and U = {~u1, . . . , ~un} bases for Fn
q.

{~0} = L0 ( L1 = Span{~b1} ( L2 = Span{~b1,~b2} ( · · · ( Ln = Fn
q.

ρ̄B(~c) = i , if ~c ∈ Li\Li−1.

(i , j) is OWB if ρ̄B(~bi ′ ∗ ~uj) < ρ̄B(~bi ∗ ~uj) for i ′ = 1, . . . , i − 1.

If a supporting algebra is given then information can be extracted
regarding above.

Think of B = U corresponding to {1,X ,X 2, . . . ,X q−1}.

ev(X i ) ∗ ev(X j) = ev(X i+j) applied when i + j < q.
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If a supporting algebra is given then information can be extracted
regarding above.

Think of B = U corresponding to {1,X ,X 2, . . . ,X q−1}.

ev(X i ) ∗ ev(X j) = ev(X i+j) applied when i + j < q.
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To hit:

σ̄(i) = #{l | ∃j such that (i , j) is OWB

and ρ̄B(~bi ∗ ~uj) = l}

Theorem:

If ρ̄B(~c) = i then wH(~c) ≥ σ̄(i).

Proof: Assume (i , j1), (i , j2), . . . , (i , jσ) hits l1, l2, . . . , lσ.

{~c ∗ ~uj1 , · · · ,~c ∗ ~ujσ} is linearly independent.

Hence, ~c ∗ Span{~uj1 , · · ·~ujσ} is of dimension σ.

But {~c ∗ ~d | ~d ∈ Fn
q} is of dimension wH(~c). �
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To be hit:

µ̄(l) = #{i | ∃j such that (i , j) is OWB

and ρ̄B(~bi ∗ ~uj) = l}

Theorem:

Let l be such that ~c · ~bl 6= 0 but ~c · ~bl ′ = 0 for all l ′ < l . Then
wH(~c) ≥ µ̄(l).

Proof: Same type of arguments as before. �

Primary code: minimum distance ≥ smallest σ̄(i) value among
generating vectors.

Dual code: minimum distance ≥ smallest µ̄ value among
non-parity-check vectors.
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Recent results (with Matsumoto and Ruano):

G = {~g1, . . . , ~gn}, H = {~h1, . . . ,~hn} and U = {~u1, . . . , ~un} with ~gT
1
...
~gT
n

[~hn · · ·~h1] = I

then very nice translation between ρ̄G , σ̄ with respect to (G,U) on
the one side and ρ̄H, µ̄ with respect to (H,U) on the other side.
Primary code description ⇔ dual code description.

I Feng–Rao majority decoding algorithm for dual codes (usually
described by means of algebra) can be formulated in linear
code set-up (Matsumoto–Miura 2000). Works for WB.

I Decoding of algebraically defined primary codes: Go to linear
code level. Detect dual description and use linear version of
decoding algorithm.

I Feng–Rao bound for dual codes strongly related to footprint
bound.
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R = F5[X ,Y ].

{P1 = (1, 1),P2 = (1, 2),P3 = (1, 3),P4 = (2, 1), . . . ,P9 = (3, 3)} ( F2
5

~g1 = ev(1), ~g2 = ev(X ), ~g3 = ev(Y ), ~g4 = ev(X 2), ~g5 = ev(XY ),
~g6 = ev(Y 2), ~g7 = ev(X 2Y ), ~g8 = ev(XY 2), ~g9 = ev(X 2Y 2).

~h1 = ev(X 2Y 2 + XY 2 + X 2Y + XY ),
~h2 = ev(X 2Y 2 + 3XY 2 + X 2Y + Y 2 + 3XY + Y ),
~h3 = ev(X 2Y 2 + XY 2 + 3X 2Y + 3XY + X 2 + X ),
~h4 = ev(XY 2 + Y 2 + XY + Y ),
~h5 = ev(X 2Y 2 + 3XY 2 + 3X 2Y +Y 2 + 4XY +X 2 + 3Y + 3X + 1),
~h6 = ev(X 2Y + XY + X 2 + X ),
~h7 = ev(XY 2 + Y 2 + 3XY + 3Y + X + 1),
~h8 = ev(X 2Y + 3XY + X 2 + Y + 3X + 1),
~h9 = ev(XY + Y + X + 1).
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Information from

I function field theory,

I Gröbner basis theory,

I algebra,

I order domain theory

translates easily to information on ρ̄ and OWB, WWB or WB.

Multiplication corresponds to componentwise product.

Recent list decoding algorithms for algebraic geometric codes
decode beoyond the bound for primary codes.
(Lee–Bras-Amorós–O’Sullivan 2011, G–Matsumoto–Ruano 2012,
Lee–Bras-Amorós–O’Sullivan 2012).
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Everything said so far regarding minimum distance can be lifted to
generalized Hamming weights.

Supp(D) = {i ∈ {1, . . . , n} | ci 6= 0 for some ~c ∈ D}.

di (C ) = min{#Supp(D) | D ⊆ C , dim(D) = i}

Give information about behaviour of

I Wiretap channel of type II.

I Secret sharing schemes.
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Generalized Reed–Muller codes:

Y 4 XY 4 X 2Y 4 X 3Y 4 X 4Y 4

Y 3 XY 3 X 2Y 3 X 3Y 3 X 4Y 3

Y 2 XY 2 X 2Y 2 X 3Y 2 X 4Y 2

Y XY X 2Y X 3Y X 4Y
1 X X 2 X 3 X 4

5 4 3 2 1
10 8 6 4 2
15 12 9 6 3
20 16 12 8 4
25 20 15 10 5

I Minimum distance corresponds to value on border (can be
realized as product of linear factors).

I Second smallest weight: What happens if leading monomial is
on the border, but minimal value is not realized?

I Use Buchberger’s algorithm at a theoretical level. Second
smallest weigth IS second smallest number above for degrees
up to qm−1. G-2008

I For m = 2 the degrees > q are easily solved. G-2008

I Ericson-1974, Enough to know the case with two variables.
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Conclusion:

I The variety of levels can sometimes help in realizing what is
“really” going on.

I Lower level descriptions often captures what is going on, but
might appear technical.
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